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Abstract

The direct quadrature method of moments is presented as an efficient and accurate means of numerically computing

solutions of the Fokker–Planck equation corresponding to stochastic nonlinear dynamical systems. The theoretical details

of the solution procedure are first presented. The method is then used to solve Fokker–Planck equations for both 1D and

2D (noisy van der Pol oscillator) processes which possess nonlinear stochastic differential equations. Higher-order

moments of the stationary solutions are computed and prove to be very accurate when compared to analytic (1D process)

and Monte Carlo (2D process) solutions.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Characterization of the response of stochastic systems is of interest for engineers in many different
disciplines. This is particularly true in the field of structural dynamics where loads can often be thought of as
random processes. For example in the field of aeroelasticity, Ibrahim and his colleagues considered the
pressure fluctuations due to a turbulent boundary layer as random forces when analyzing panel flutter [1–3].
The response of a structural dynamic system to random excitation having delta-correlation can be considered
a Markov process. The transition probability density of such a system is governed by an appropriate
Fokker–Planck equation.

Exact solutions of the Fokker–Planck equation are known for only a few systems. In most cases,
approximate solutions need to be found using either analytic or numerical methods. The text by Risken [4]
presents many such analytical methods. Examples of approximate analytical solutions are the van Kampen
expansion method [5,6], the method of matrix continued fractions [7] and path integral solutions [8]. In terms
of numerical methods, finite difference and finite element methods appear to be the most popular [9–12]. While
these methods can give accurate solutions, the computational expense can be prohibitive for Fokker–Planck
equations with dimensions larger than two.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In this paper we present an efficient and accurate method for the solution of the Fokker–Planck equation.
This method is based upon the direct quadrature method of moments (DQMOM) first introduced by Fox and
colleagues [13–15] for the numerical solution of the population balance equations for multi-phase flow
predictions. Recently this method has also been used to compute numerical solutions for the Boltzmann
equation [16]. Here DQMOM will be used to compute numerical solutions for 1D and 2D Fokker–Planck
equations, and stationary moment results from these solutions are compared to results from analytical and
numerical solutions.

2. Theory

Given the set of stochastic differential equations in N variables x ¼ fx1;x2; . . . ;xNg:

_xi ¼ hiðx; tÞ þ gijðx; tÞGjðtÞ, (1)

where GjðtÞ are Gaussian random variables with the following correlations:

hGiðtÞi ¼ 0; hGiðtÞGjðt
0Þi ¼ 2dijdðt� t0Þ, (2)

with dij the Kronecker delta and dðt� t0Þ the delta function, a Fokker–Planck equation for the transition
probability Pðx; tjx0; t0Þ can be written in the following form:

qPðx; tjx0; t0Þ

qt
¼ �

q
qxi

½D
ð1Þ
i ðx; tÞPðx; tjx

0; t0Þ� þ
q2

qxi qxj

½D
ð2Þ
ij ðx; tÞPðx; tjx

0; t0Þ�. (3)

It can also be shown that the probability density function f ðx; tÞ also satisfies the Fokker–Planck equation:

qf ðx; tÞ

qt
¼ �

q
qxi

½D
ð1Þ
i ðx; tÞf ðx; tÞ� þ

q2

qxi qxj

½D
ð2Þ
ij ðx; tÞf ðx; tÞ�. (4)

In Eqs. (3) and (4) the drift (D
ð1Þ
i ðx; tÞ) and diffusion (D

ð2Þ
ij ðx; tÞ) coefficients are defined as (using the notation of

Eq. (1))

D
ð1Þ
i ðx; tÞ ¼ hiðx; tÞ, (5)

D
ð2Þ
ij ðx; tÞ ¼ gikðx; tÞgjkðx; tÞ (6)

and are derived using the Itô calculus [4]. Note in Eqs. (3) and (4) summation notation is assumed.
In order to simplify the derivations, Eq. (4) will be specialized to the problem of N ¼ 2 and all cross-

diffusion terms will be assumed to be zero (D
ð2Þ
12 ¼ D

ð2Þ
21 ¼ 0). Also D

ð2Þ
11 will be assumed to be zero. In practice,

generalizing the method (to be discussed in this paper) to higher dimensions with all terms included does not
complicate the computational procedure. With the above simplifications we get the following for the
Fokker–Planck equations:

qf ðx; tÞ

qt
¼ �

q
qx
½D
ð1Þ
1 f ðx; tÞ� �

q
qy
½D
ð1Þ
2 f ðx; tÞ� þ

q2

qy2
ðD
ð2Þ
22 f ðx; tÞÞ, (7)

where now x ¼ fx; ygT.
In the DQMOM approach the probability density is written as a weighted summation of products of Dirac

delta functions:

f ðx; tÞ ¼
XM
i¼1

wiðtÞdðx� xiðtÞÞdðy� yiðtÞÞ, (8)

where M is the number of delta functions (compute nodes) and wiðtÞ, xiðtÞ and yiðtÞ are the dependent variables
for compute node i. In the rest of the paper wi will be called weights and xi, yi the abscissas. Also the explicit
expression of the dependent variables as functions of time will be dropped in order to condense the notation. If
the delta functions dðx� xiÞ and dðy� yiÞ are written as dðxÞi and dðyÞi , respectively, substitution of Eq. (8) into
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Eq. (7) will result in the following:

XM
i¼1

qwi

qt
dðxÞi dðyÞi � wi

qxi

qt
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qt
dðxÞi

qdðyÞi
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" #

¼
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�
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i dðyÞi Þ þ

q2

qy2
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ð2Þ
22 wid

ðxÞ
i dðyÞi Þ

� �
. (9)

Defining new variables, which we will call the weighted abscissas, mðxÞi ¼ wixi and mðyÞi ¼ wiyi, Eq. (9) becomes
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i¼1

qwi

qt
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qt
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qwi

qt
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qt

qdðyÞi

qy
dðxÞi þ yi

qwi

qt

qdðyÞi

qy
dðxÞi

" #

¼
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ðD
ð1Þ
1 wid

ðxÞ
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q
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ðD
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i dðyÞi Þ þ

q2
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. (10)

At this point we have one equation in 3M unknowns. In order to close this equation, we will take 3M

moments of it. Recalling that the generalized moment hxrysi, for non-negative integers r and s, is given by the
expression

hxrysi ¼

Z 1
�1

xrysf ðx; y; tÞdxdy, (11)

the evolution of hxrysi can be obtained by taking the moment of Eq. (10) (after interchanging the order of
summation and integration and combining the sums on the left- and right-hand sides):
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. (12)

In simplifying Eq. (12) the following properties of the Dirac delta function are used:Z
xrdðx� xiÞdx ¼ xr

i , (13)

Z
xr ddðx� xiÞ

dx
dx ¼ �rxr�1

i . (14)

So on using Eqs. (13) and (14) and integrating by parts the right-hand side of Eq. (12) we get the following
equation:
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#
, (15)

where jxi ;yi
denotes evaluation of the drift and diffusion terms at x ¼ xi and y ¼ yi. Using the property that the

probability density vanishes at positive and negative infinity and the assumption of a smooth probability
density function (hence a vanishing derivative of the probability density at positive and negative infinity), the
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boundary terms in Eq. (15) vanish, leaving after simplification, the following equation:
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i¼1

½1� ðrþ sÞ�xr
i y
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dt
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i ys
i

dmð1Þi

dt
þ sxr

i y
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"

¼ rxr�1
i ys
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22 jxi ;yi
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#
. (16)

This is now a nonlinear differential equation for each of the weights and weighted abscissas. There are 3M

such equations, which in matrix form can be written as

Az ¼ Fðw; x; yÞ, (17)

where the matrix A is a nonlinear function of the abscissas and z ¼ fdw=dt;dlð1Þ=dt;dlð2Þ=dtgT. Also w, x, y
and l are the vectors of weights, abscissas and weighted abscissas, respectively. Eq. (17) is a set of implicit
nonlinear ordinary differential equations. In order solve these equations, the DDASPK software package
[17–19] is used.

3. Results

Two sample problems are solved to show the effectiveness of the DQMOM solution in solving the
Fokker–Planck equation. The first problem is the nonlinear process with stochastic ordinary differential
equation given by

dX ðtÞ ¼ ðX ðtÞ � X ðtÞ3Þdtþ sdW ðtÞ, (18)

where dW ðtÞ denotes increments due to a Wiener process and the corresponding Fokker–Planck equation
given by

qf

qt
¼ �

q
qx
½ðx� x3Þf � þ

s2

2

q2f

qx2
, (19)

which we solve numerically using the DQMOM. The deterministic counterpart to this equation
(dx=dt ¼ x� x3) has two asymptotically stable equilibrium points x ¼ �1 separated by an unstable
equilibrium point at x ¼ 0. An analytical solution to Eq. (19) is not known but the stationary solution is
given by

PðxÞ ¼ ceðx
2�0:5x4Þ=s2 , (20)
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Fig. 1. Second moment of x versus the noise intensity level s. four quadrature points, six quadrature points, eight

quadrature points, nine quadrature points, - - - analytical.
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Fig. 2. Fourth moment of x versus the noise intensity level s. four quadrature points, six quadrature points, eight

quadrature points, nine quadrature points, - - - analytical.
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where c is a normalization constant. Figs. 1–3 show the second, fourth and sixth moments as computed by the
DQMOM numerical method as a function of the noise level s. Also shown on these figures are the analytical
results computed via Eq. (20). With only eight quadrature nodes the DQMOM and analytical solutions agree
quite well for each of the moments. Also note that all odd moments are zero for this problem and the
DQMOM method computes these correctly as well.

The second problem which is investigated is the van der Pol oscillator subjected to stationary Gaussian
white noise. If the vector process ZðtÞ ¼ fxðtÞ; yðtÞgT is introduced, where yðtÞ ¼ _xðtÞ, the Ito-type stochastic
differential equation can be written as

dZðtÞ ¼ fðZðtÞÞdtþQdW ðtÞ. (21)

Here we have

fðZðtÞÞ ¼
yðtÞ

�m½xðtÞ2 � 1�yðtÞ � xðtÞ

( )
, (22)
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Fig. 4. Second moment of x versus the noise intensity level D. m ¼ 0:1, eight node direct quadrature method of moments; —

m ¼ 0:1, Monte Carlo; m ¼ 0:1, statistical nonlinearization [20]; m ¼ 1:0, eight node direct quadrature method of moments;

- - - m ¼ 1:0, Monte Carlo; m ¼ 1:0, statistical nonlinearization [20].
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Fig. 5. Fourth moment of x versus the noise intensity level D. m ¼ 0:1, eight node direct quadrature method of moments; — m ¼ 0:1,
Monte Carlo; m ¼ 0:1, statistical nonlinearization [20]; m ¼ 1:0, eight node direct quadrature method of moments;

- - - m ¼ 1:0, Monte Carlo; m ¼ 1:0, statistical nonlinearization Ref [20].
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Q ¼
0ffiffiffiffiffiffiffi
2D
p

( )
. (23)

The corresponding Fokker–Planck equation for this problem can be written as

qf

qt
¼ mðx2 � 1Þf � y

qf

qx
þ ½mðx2 � 1Þyþ x�

qf

qy
þD

q2f

qy2
, (24)

which is solved numerically using the DQMOM. The second and fourth moments of x as computed by a
DQMOM solution of Eq. (24) is shown in Figs. 4 and 5 for m ¼ 0:1 and 1.0. Also shown in these figures is a
numerical solution of the stochastic differential equation, Eq. (21), using a forward Euler–Maruyama time
integration scheme. Due to its simplicity, we restricted our attention to the commonly used Euler–Maruyama
scheme for integration of stochastic differential equations. It is plausible that high-order integration schemes
for stochastic differential equations could lead to more accurate solutions, with greater computational
efficiency. The statistics from this solution were computed using a Monte Carlo solution with 5� 105 particles
and a timestep of 0.0005 seconds. These figures also include moments computed using the stationary solutions
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from the analytic statistical nonlinearization procedure presented in Ref. [20]. In these figures one can see that
the second- and fourth-order moments computed using an eight node DQMOM solution compare favorably
with the direct solution of the stochastic differential equation. Agreement with the statistical nonlinearization
result is better for smaller values of the noise level D and the damping parameter m which is consistent with the
approximations made in the analytic method. Note that in order to compute the DQMOM solution, all
moments up to fifth order and ðr; sÞ ¼ ð6; 0Þ, (5,1), (4,2) were taken (see Eq. (12)). The DQMOM solution is
substantially faster than the direct solution of the stochastic differential equation. On a Intel T2500 2GHz
processor 10 s of simulation time took 4 s of computational time using the DQMOM solution and 1500 s of
computational time using the Monte Carlo solution of the stochastic differential equations.

4. Conclusions

A numerical method, the direct quadrature method of moments (DQMOM), is presented for the numerical
solution of the Fokker–Planck equation corresponding to stochastic nonlinear dynamical systems. In
DQMOM, the probability density function is written as summation of products of Dirac delta functions. The
locations of the quadrature abscissas in probability space (arguments of the delta function) become part of the
solution and are obtained (along with the quadrature weights) as solutions of their evolution equations. These
evolution equations are obtained through the Fokker–Planck equation using constraints on the generalized
moments of the stochastic processes. The use of the Dirac delta function results in a much simpler (over
traditional weighted-residual methods) treatment of nonlinear drift and diffusion terms.

In this paper the method has been used to compute moments for 1D and 2D processes which possess
nonlinear stochastic differential equations. In the 1D problem the stationary moments (second, fourth
and sixth) computed using the DQMOM method compare well with analytical solutions. The distribution for
this problem is bimodal. The 2D problem was the noisy van der Pol oscillator. Here stationary second- and
fourth-order moments computed using the DQMOM solution compared well with those from a direct
simulation of the stochastic differential equation and with an analytical solution derived using the statistical
nonlinearization procedure.

The authors feel that the method presented possesses the potential to be able to solve high-dimensional
Fokker–Planck equations much more efficiently than most current numerical methods. Further work will
involve investigating 3D (and higher) stochastic processes in such fields as aeroelasticity and fluid mechanics.
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